Let g(λ) be the spectral density of a stationary process and let fθ(λ), θ ∈ Θ, be a fitted spectral model for g(λ). A minimum contrast estimator of θ is defined that minimizes a distance between , where is a nonparametric spectral density estimator based on n observations. It is known that is asymptotically Gaussian efficient if g(λ) = fθ(λ). Because there are infinitely many candidates for the distance function , this paper discusses higher order asymptotic theory for in relation to the choice of D. First, the second-order Edgeworth expansion for is derived. Then it is shown that the bias-adjusted version of is not second-order asymptotically efficient in general. This is in sharp contrast with regular parametric estimation, where it is known that if an estimator is first-order asymptotically efficient, then it is automatically second-order asymptotically efficient after a suitable bias adjustment (e.g., Ghosh, 1994, Higher Order Asymptotics, p. 57). The paper establishes therefore that for semiparametric estimation it does not hold in general that “first-order efficiency implies second-order efficiency.” The paper develops verifiable conditions on D that imply second-order efficiency.This paper was written while the first author was visiting the University of Bristol as a Benjamin Meaker Professor. The second author was previously at Bristol and is now supported by a fellowship of the Royal Netherlands Academy of Arts and Sciences. We are grateful to the co-editor Pentti Saikkonen and two anonymous referees for their valuable comments, which significantly improved the paper.
Read full abstract