Based on topology optimization method, a dual-objective function topology optimization model containing minimum average temperature and minimum flow power dissipation was established in this study. Coupled with the uneven heat generation model of proton exchange membrane fuel cells, the optimal layout scheme under the target operating conditions was adaptively obtained. The effects of volume fraction, objective function weight, and parabolic inlet velocity on the flow channel structure and cooling performance of topological cooling plates were studied. The results indicate that with the increase of volume fraction, the area of fluid region increases, the average temperature and the pressure drop of cooling plate gradually decrease. At the volume fraction of 0.5, the cooling plate has the best cooling performance. The temperature difference and maximum temperature reach the minimum values of 5.45 K and 347.58 K, respectively. When the volume fraction increases from 0.4 to 0.6, the pressure difference decreases by 67.64 %. With the increase of temperature weight coefficient, the area of high-temperature area gradually decreases, and the temperature uniformity is significantly improved. When the inlet velocity of coolant is 0.025 m/s and the temperature weight coefficient is 0.9, the average and maximum temperatures of cooling plate reach the lowest values, which are 343.53 K and 344.51 K, respectively. The maximum temperature of cooling plate under parabolic inlet velocity is of 347.87 K, which is 0.29 K higher than that under uniform inlet velocity. Non-uniform coolant inlet velocity will lead to a decrease in heat transfer capacity of cooling plate and an increase in coolant power consumption.
Read full abstract