The cabbage whitefly has become an important pest on brassica vegetables in Central Europe. It does not destroy the affected plants, but the product becomes unmarketable, causing considerable economic losses. The pest is also difficult to control due to its way of life and because it develops resistance to some of the active components of insecticides. In organic farming systems, insecticides are strictly restricted, but neither predators nor whitefly parasitoids are able to keep the pest at a tolerable level. It is, therefore, necessary to become familiar with the whitefly’s life cycle and habits, including mass migration from winter hosts to vegetables. We inspected 44 rapeseed fields across the republic in the period 2014–2021 in order to find the connection between the presence of oilseed rape fields near vegetable growing areas (VGAs) and the abundance of the overwintering cabbage whiteflies. We also conducted regular weekly monitoring of whitefly occurrence in the main cultivation area of the Czech Republic (Polabí) with the aim of specifying critical data important for the successful control of this pest. We found that the cabbage whitefly incidences were many times higher in rapeseed fields close to VGAs compared to areas where the crops are not adjacent. The average number of whiteflies was 0.59 individuals per plant in VGA-1 (oilseed rape grown inside this area or up to 1 km far), 0.052 in VGA-2 (distance 3–10 km from vegetable fields) and 0.014 in VGA-3 (more than 20 km). In the extremely warm year 2016, the difference was up to sixty times. The first CW eggs laid on cruciferous vegetables were usually found around 20 May. The period of mass migration of CW adults to cruciferous vegetables was between 6 June and 2 August. At this time, vegetables are most vulnerable to damage. Successful control of the cabbage whitefly requires the use of fabric netting, combined with an insecticide as needed and trap plants as needed; the latter have to be destroyed before adult whiteflies hatch—typically in early July.
Read full abstract