The dynamical interactions caused by a line heat source moving inside a homogeneous isotropic thermo-microstretch viscoelastic half space, whose surface is subjected to a thermal load, are investigated. The formulation is in the context of generalized thermoelasticity theories proposed by Lord and Shulman (J. Mech. Phys. Solid, 15, 299 (1967)) and Green and Lindsay (Thermoelasticity, J. Elasticity, 2, 1 (1972)). The surface is assumed to be traction free. The solutions in terms of displacement components, mechanical stresses, temperature, couple stress, and microstress distribution are procured by employing the normal mode analysis. The numerical estimates of the considered variables are obtained for an aluminium–epoxy material. The results obtained are demonstrated graphically to show the effect of moving heat source and viscosity on the displacement, stresses, and temperature distribution.
Read full abstract