Patterned micro/nanostructure arrays have shown the potential to effectively regulate cellular behavior, and their unique microstructure may address the limitations of conventional pore materials, leading to novel phenomena. In this work, a large-area gold micro/nano-array substrate with an average hole of ≈32nm is designed and extensively screened. Precisely engineered nanopores on the substrate can effectively improve photothermal conversion efficiency, and instant heat dissipation in the absence of laser irradiation. The mesoporous arrays are fabricated by hybrid lithography, offering advantages such as simple processing, high reproducibility, and immense commercial potential. Notably, its heating rate is as rapid as ≈45 Kµs-1 at low power levels, with the cooling duration reduced to ≈50 µs after the laser irradiation. Metabolism regulatory proteins such as cytochrome C (CytoC)and β-galactosidase (β-gal) can be efficiently introduced into the U87 cell model without inducing phototoxicity or protein inactivation, maintaining catalytic activity to modulate the cellular metabolic state. This delivery platform based on transient nano-cyclones stimulating cell perturbations can be further expanded through modulated microstructures, such as delivering functional proteins or biomolecules for efficient intracellular regulation, cellular transfection, and in the future application as a potential high-throughput screening tool for clustered regularly interspaced short palindromic repeats (CAR-T) biopharmaceutical and clustered regularly interspaced short palindromic repeats (CRISPR) technologies.
Read full abstract