Low voltage transmission electron microscopy (LVTEM) with accelerating voltages as low as 5 kV was applied to cell biology. To take advantage of the increased contrast given by LVTEM, tissue preparation was modified omitting all heavy metals such as osmium, uranium, and lead from the fixation, on block staining and counterstaining. Nonstained ultra-thin tissue sections (40 nm thick) generated highly contrasted images. While the aspect of the cells remains similar to that obtained by conventional TEM, some new substructures were revealed. The pancreatic acinar cells granules present a heterogeneous matrix with partitions corresponding to segregation of their different secretory proteins. Microvilli display their core of microfilaments anchored to the dense top membrane. Mitochondria revealed the presence of distinct particles along their cristea membranes that may correspond to the ATP synthase complexes or oxysomes. The dense nuclear chromatin displays a honey-comb appearance while distinct beads aligned along thin threads were seen in the dispersed chromatin. These new features revealed by LVTEM correlate with structures described or predicted through other approaches. Masking effects due to thickness of the tissue sections and to the presence of heavy metals must have prevented their observation by conventional TEM. Furthermore, the immunogold was adapted to LVTEM revealing nuclear lamin-A at the edge of the dense chromatin ribbons. Combining cytochemistry with LVTEM brings additional advantages to this new approach in cell biology.
Read full abstract