To combat the increasing levels of carbon dioxide (CO2) released from the combustion of fossil fuels, microalgae have emerged as a promising strategy for biological carbon capture, utilization, and storage. This study used a marine microalgal strain, Nannochloropsis oceanica IMET1, which thrives in high CO2 concentrations. A high-pH, high-alkalinity culture was designed for CO2 capture through algal biomass production as well as permanent sequestration through calcium carbonate (CaCO3) precipitation. This was accomplished by timed pH elevation and the addition of sodium bicarbonate to cultures of N. oceanica grown at lab scale (1 L) and pilot scale (500 L) with 10% and 5% CO2, respectively. Our data showed that 0.02 M NaHCO3 promoted algal growth and that sparging cultures with ambient air after 12 days raised pH and created favorable CaCO3 formation conditions. At the 1 L scale, we reached 1.52 g L-1 biomass after 12 days and an extra 9.3% CO2 was captured in the form of CaCO3 precipitates. At the 500 L pilot scale, an extra 60% CO2 was captured (Day 40) with a maximum CO2 capture rate of 63.2 g m-2 day-1 (Day 35). Bacterial communities associated with the microalgae were dominated by two novel Patescibacteria. Functional analysis revealed that genes for several plant growth-promotion traits (PGPTs) were enriched within this group. The microalgal-bacterial coculture system offers advantages for enhanced carbon mitigation through biomass production and simultaneous precipitation of recalcitrant CaCO3 for long-term CO2 storage.IMPORTANCECapturing carbon dioxide (CO2) released from fossil fuel combustion is of the utmost importance as the impacts of climate change continue to worsen. Microalgae can remove CO2 through their natural photosynthetic pathways and are additionally able to convert CO2 into a stable, recalcitrant form as calcium carbonate (CaCO3). We demonstrate that microalgae-based carbon capture systems can be greatly improved with high pH and high alkalinity by providing optimal conditions for carbonate precipitation. Our results with the microalga, Nannochloropsis oceanica strain IMET1, show an extra 9.3% CO2 captured as CaCO3 at the 1 L scale and an extra 60% CO2 captured at the 500 L (pilot) scale. Our optimized system provides a novel approach to capture CO2 through two mechanisms: (i) as organic carbon within microalgal biomass and (ii) as inorganic carbon stored permanently in the form of CaCO3.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
4454 Articles
Published in last 50 years
Articles published on Microalgal Biomass
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
3931 Search results
Sort by Recency