We report on the effects of temperature (+30 to -100 degrees C) on the fluorescence from N-acetyl tryptophanamide (NATA) and human serum albumin (HSA) sequestered within Aerosol-OT (AOT) reversed micelles. NATA reports simultaneously from the polar and non-polar side of the reverse micelle interface. As the sample temperature decreases, the relative fraction of NATA molecules associated with the polar side increases. This redistribution process is characterized by DeltaH = -14.8 +/- 0.6 kJ/mol and DeltaS = -54 +/- 2 J/(K mol). The activation energy for thermal quenching (E(a,TQ)) associated with the polar side NATA molecules is 6.7 kJ/mol before the micelles have shed water and 1.0 kJ/mol after water shedding (below approximately -20 degrees C). The time-resolved fluorescence intensity decay for tryptophan-214 in HSA is triple exponential. We suggest that these lifetimes arise from three indole residue conformations in equilibrium. Cooling the sample causes a freezing-in of the least quenched conformer; the other conformers are frozen out. The E(a,TQ) value for the shortest lifetime component is 6 kJ/mol. The E(a,TQ) for the long and intermediate lifetime components are equivalent (approximately 1.5 kJ/mol).
Read full abstract