The present analysis represents the MHD flow of micropolar fluid past an oscillating infinite vertical plate embedded in porous media. At the plate, free convections are caused due to the differences in temperature and concentration. Therefore, the combined effect of radiative heat and mass transfer is taken into account. Partial differential equations are used in the mathematical formulation of a micropolar fluid. The system of dimensional governing equations is reduced to dimensionless form by means of dimensional analysis. The Laplace transform technique is applied to obtain the exact solutions for velocity, temperature, and concentration. In order to highlight the flow behavior, numerical computation and graphical illustration are carried out. Furthermore, the corresponding skin friction and wall couple stress are calculated.
Read full abstract