BackgroundIndividuals using methamphetamine (METH) may experience psychosis, which usually requires aggressive treatment. Studies of the neural correlates of METH-associated psychosis (MAP) have focused predominantly on the default mode network (DMN) and cognitive control networks. We hypothesize that METH use alters global functional connections in resting-state brain networks and that certain cross-network connections could be associated with psychosis.MethodsWe recruited 24 healthy controls (CRL) and 54 men with METH use disorder (MUD) who were then divided into 25 without psychosis (MNP) and 29 with MAP. Psychotic symptom severity was assessed using the Positive and Negative Syndrome Scale (PANSS), evaluating (1) large-scale alterations in regional-wise resting-state functional connectivity (rsFC) across 11 brain networks and (2) associations between rsFC and psychotic symptom severity.ResultsThe MUD group exhibited greater rsFC between the salience network (SN)-DMN, and subcortical network (SCN)-DMN compared to the CRL group. The MAP group exhibited decreased rsFC in the sensory/somatomotor network (SMN)-dorsal attention network (DAN), SMN-ventral attention network (VAN), SMN-SN, and SMN-auditory network (AN), whereas the MNP group exhibited increased rsFC in the SMN-DMN and the frontoparietal network (FPN)-DMN compared to CRL. Additionally, the MAP group exhibited decreased rsFC strength between the SMN-DMN, SMN-AN, SMN-FPN, and DMN-VAN compared to the MNP group. Furthermore, across the entire MUD group, the PANSS-Positive subscale was negatively correlated with the DMN-FPN and FPN-SMN, while the PANSS-Negative subscale was negatively correlated with the DMN-AN and SMN-SMN.ConclusionMUD is associated with altered global functional connectivity. In addition, the MAP group exhibits a different brain functional network compared to the MNP group.
Read full abstract