The localized surface plasmon resonance (LSPR) of metal nanoparticles can substantially enhance the activity of photoelectrocatalytic (PEC) reactions. However, quantifying the respective contributions of different LSPR mechanisms to the enhancement of PEC performance remains an urgent challenge. In this work, Cu@Cu2O composites prepared by annealing Cu2O under an inert atmosphere and electrodeposited metal@Cu2O composites (MED@Cu2O, MED = CuED, AuED, AgED, PdED, PtED) are employed as platform materials to investigate the LSPR effect on the PEC hydrogen evolution reaction (HER). All the composites exhibited remarkably LSPR-enhanced activity toward PEC HER. The contributions of two LSPR mechanisms, plasmon induced resonance energy transfer (PIRET) and hot electron transfer (HET), to the photocurrent on Cu@Cu2O and CuED@Cu2O are quantified by using different bands of incident light. Moreover, using MED@Cu2O composites, the effects of both the metal species and the applied potential on HET are quantitatively investigated. The results reveal that a pronounced HET enhancement occurs only when the LSPR peak energy is lower than the semiconductor bandgap energy (Eg) and that HET strengthens as the applied potential becomes more negative for PEC HER. This work therefore provides a quantitative understanding of the roles of PIRET and HET in boosting PEC activity.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
38203 Articles
Published in last 50 years
Articles published on Metal Nanoparticles
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
35592 Search results
Sort by Recency