Guided wave modes in the uniaxial anisotropic hyperbolic metamaterials (HMMs) based on highly doped semiconductor instead of metal in the mid-infrared region are investigated theoretically. The heavily doped semiconductor is used to overcome the restrictions of the conventional metal-based structures caused by the lake of tunability and high metal loss at mid-infrared wavelengths. The unit cells of our proposed metamaterial are composed of alternating layers of undoped InAs as a dielectric layer and highly doped InAs as a metal layer. We numerically study the linear and nonlinear behavior of such multilayer metamaterials, for different arrangements of layers in the parallel (vertical HMM) and perpendicular (horizontal HMM) to the input wave vector. The effect of doping concentration, metal to dielectric thickness ratio in the unit cell (fill-fraction), and the total thickness of structure on the guided modes and transmission/reflection spectra of the metamaterials are studied. Moreover, the charge redistribution due to band-bending in the alternating doped and undoped layers of InAs is considered in our simulations. We demonstrate that the guided modes of the proposed hyperbolic metamaterial can change by increasing the intensity of the incident lightwave and entering the nonlinear regime. Therefore, the transition from linear to the nonlinear region leads to high-performance optical bistability. Furthermore, the switching performance in the vertical and horizontal HMMs are inspected and an ultrafast, low power, and high extinction ratio all-optical switch is presented based on a vertical structure of nonlinear highly doped semiconductor hyperbolic metamaterials.
Read full abstract