We adapted previously developed decision rules from the New England Bladder Cancer Study (NEBCS) to assign occupational exposure to straight, soluble, and synthetic metalworking fluids (MWFs) to participants of the Spanish Bladder Cancer Study (SBCS). The SBCS and NEBCS are case-control studies that used the same lifetime occupational history and job module questionnaires. We adapted published decision rules from the NEBCS that linked questionnaire responses to estimates of the probability (<5, ≥5 to <50, ≥50 to <100, and 100%), frequency (in h week-1), and intensity (in mg m-3) of exposure to each of the three broad classes of MWFs to assign exposure to 10 182 reported jobs in the SBCS. The decision rules used the participant's module responses to MWF questions wherever possible. We then used these SBCS module responses to calculate job-, industry-, and time-specific patterns in the prevalence and frequency of MWF exposure. These estimates replaced the NEBCS-specific estimates in decision rules applied to jobs without MWF module responses. Intensity estimates were predicted using a previously developed statistical model that used the decade, industry (three categories), operation (grinding versus machining), and MWF type extracted from the SBCS questionnaire responses. We also developed new decision rules to assess mineral oil exposure from non-machining sources (possibly exposed versus not exposed). The decision rules for MWF and mineral oil identified questionnaire response patterns that required job-by-job expert review. To assign MWF exposure, we applied decision rules that incorporated participant's responses and job group patterns for 99% of the jobs and conducted expert review of the remaining 1% (145) jobs. Overall, 14% of the jobs were assessed as having ≥5% probability of exposure to at least one of the three MWFs. Probability of exposure of ≥50% to soluble, straight, and synthetic MWFs was identified in 2.5, 1.7, and 0.5% of the jobs, respectively. To assign mineral oil from non-machining sources, we used module responses for 49% of jobs, a job-exposure matrix for 41% of jobs, and expert review for the remaining 10%. We identified 24% of jobs as possibly exposed to mineral oil from non-machining sources. We demonstrated that we could adapt existing decision rules to assess exposure in a new population by deriving population-specific job group patterns.
Read full abstract