In the process of the generation of jet formed by the shaped charge explosive compression, the grain of the metal liner is refined from 30-80 μm down to sub-micron or nanometer level. There is a strong scientific significance for studying the mechanism of grain refinement and dynamic superplastic deformation at a micro level. The main contents of this study are as follows. Firstly, the models of nanocrystalline copper with the grain sizes of 7.17, 9.11, 12.55, 14.85, 18.38 and 22.48 nm are established using the Voronoi geometrical construction method, and these models are relaxed in 100 ps to the equilibrium state at 293 K. Then, the tensile deformation processes of nanocrystalline copper at various grain sizes are simulated by using the molecular dynamics method. The strain increases to 0.2 gradually at a strain rate of 2×109/s. Based on the data output, the stress-strain curves at different grain sizes are gained and the corresponding values of the averaged flow stress are calculated. The results show that the average flow stress exhibits the maximum at a grain size of 14.85 nm. Finally, the primary deformation process of nanocrystalline copper is displayed by analyzing the atomic configuration evolvement. When the grain size is 22.48 nm, the typical dislocation motion is found and there are a huge number of dislocations in the deformation process. However, the number of dislocations decreases sharply at the grain sizes of 14.85 nm and 9.11 nm, and the grain-boundary motion is visible at these small grain sizes. The most significant work is that the deformation mechanisms of nanocrystalline copper at different grain sizes are analyzed in detail. The results indicate that the dislocation motion dominates the deformation process when the grain sizes of nanocrystalline copper are larger than 14.85 nm. As the grain sizes decrease below 14.85 nm, the grain-boundary sliding and rotation become a dominant deformation mechanism. This change of deformation mechanism is the fundamental reason for softening, which is so-called reverse Hall-Petch relationship. On the basis of previous study and this molecular dynamics simulation, combining the grain coalition and the grain-boundary rotation, an ideal deformation mechanism model is established at small grain sizes, which provides the microcosmic deformation mechanism reference for the large strain deformation of the jet.
Read full abstract