For solid tumors, hypoxia is associated with disease aggressiveness and poor outcomes. In addition to undergoing broad intracellular molecular and metabolic adaptations, hypoxic tumor cells extensively communicate with their microenvironments to facilitate conditions favorable for their survival, growth, and metastasis. This communication is mediated by diverse secretory factors, including exosomes (extracellular vesicles of endosomal origin). Exosomal cargo is altered considerably by hypoxia, with significant impacts on tumor-cell communication with both local and distant microenvironments. Exosomes released by cancer cells influence the tumor environment to accelerate metastasis. While tumor-derived exosomes have been identified as a major driver of premetastatic niche formation at distant sites, this mechanism in lung adenocarcinoma (LUAD) remains unclear. We found that miR-671-3p in exosomes derived from H1975 under hypoxic conditions target Krüppel-like factor 2 (KLF2) to regulate VEGFR2 expression in endothelial cells to promote angiogenesis. In addition, miR-671-3p is expressed at high levels in circulating exosomes isolated from patients with LUAD. Our study suggests that exosome miR-671-3p is involved in the formation of premetastatic niche and may serve as a blood-based biomarker for LUAD metastasis.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
8690 Articles
Published in last 50 years
Articles published on Metabolic Adaptation
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
8000 Search results
Sort by Recency