In this work, we study the mesoscopic superconducting samples with pinning centers using the time-dependent Ginzburg-Landau theory (TDGL). The pinning centers are introduced via the phenomenological function f(r) Sorensen et al. (Physica C 533, 40–43 2017). We calculated the magnetization curves M(H) for some distances d from the boundary of the sample to the position of the pinning center. From this investigation arises the relation between the first magnetic field H p and the distance d. It shows that the pinning centers located close to the boundary of the sample decrease H p , and also the existence of two regimes of the penetration of the vortices. The magnetization curves revel the existence of ruddle of jumps for low magnetic fields for small distances d, indicating a complex vortex penetration.
Read full abstract