Abstract Land–atmosphere feedbacks play an important role in the weather and climate of many semiarid regions. These feedbacks are strongly controlled by how the surface responds to precipitation events, which regulate the return of heat and moisture to the atmosphere. Characteristics of the surface can result in both differing amplitudes and rates of warming following rain. Spectral analysis is used to quantify these surface responses to rainfall events using land surface temperature (LST) derived from Earth observations (EOs). The authors analyzed two mesoscale regions in the Sahel and identified distinct differences in the strength of the short-term (<5 days) spectral variance, notably, a shift toward lower-frequency variability in forest pixels relative to nonforest areas and an increase in amplitude with decreasing vegetation cover. Consistent with these spectral signatures, areas of forest and, to a lesser extent, grassland regions were found to warm up more slowly than sparsely vegetated or barren pixels. The authors applied the same spectral analysis method to simulated LST data from the Joint UK Land Environment Simulator (JULES) land surface model. A reasonable level of agreement was found with the EO spectral analysis for two contrasting land surface regions. However, JULES shows a significant underestimate in the magnitude of the observed response to rain compared to EOs. A sensitivity analysis of the JULES model highlights an unrealistically high level of soil water availability as a key deficiency, which dampens the models response to rainfall events.
Read full abstract