In recent years, mesoporous silica materials have gained attention due to their unique properties, such as high surface area, pore volume, size, and chemical stability. These characteristics make them effective in various fields, particularly efficient supports in heterogeneous catalytic reactions. The present study developed a novel type of core-shell mesoporous microsphere material by anchoring phenylalanine on a core-shell SiO2@NiO@MS support. The catalyst support (SiO2@NiO@MS) was synthesized through homogeneous precipitation and sol-gel methods, with NiO encapsulated within the porous silica. The catalyst was characterized using various techniques, including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), Elemental mapping analysis, N2 adsorption-desorption, Transmission electron microscopy (TEM), Vibrating sample magnetometer (VSM), and Thermogravimetric analysis (TGA). It was then employed for the synthesis of triazolo[1,2-a]indazole-trione and spiro triazolo[1,2-a]indazole-tetraones compounds from 4-phenyl urazole, dimedone, and aromatic aldehydes or isatin derivatives. This synthetic approach offers multiple advantages, including high yields, faster reaction times, low catalyst requirements, and environmentally sustainable conditions.
Read full abstract