A new field in biology, ‘nano-cell biology’, has emerged from the successful use of force microscopy in understanding the structure and dynamics of cells and biomolecules, at nm resolution and in real time. Atomic force microscopy, in combination with conventional tools and approaches (electron microscopy, electrophysiology, X-ray diffraction, photon correlation spectroscopy, mass spectroscopy, biochemistry, and molecular biology), has revealed for the first time, the universal molecular machinery and mechanism of secretion in cells. Secretion occurs in all living cells and involves the delivery of intracellular products to the cell exterior. Secretory products are packaged and stored in membranous sacs or vesicles within the cell. When the cell needs to secrete these products, the secretory vesicles containing them, dock and fuse at plasma membrane-associated supramolecular structures called Porosome, to release their contents. Specialized cells for neurotransmission, enzyme secretion, or hormone release utilize a highly regulated secretory process. During secretion, swelling of secretory vesicles results in a build-up of intravesicular pressure, allowing expulsion of vesicular contents. The extent of vesicle swelling dictates the amount of vesicular contents expelled. The discovery of the porosome as the universal secretory machinery, its isolation, its structure and dynamics at nm resolution and in real time, its biochemical composition and functional reconstitution into artificial lipid membrane, have been determined. The molecular mechanism of secretory vesicle swelling, and the fusion of opposing bilayers, i.e., the fusion of secretory vesicle membrane at the base of the porosome membrane, has also been resolved.
Read full abstract