Research on antimicrobial peptides (AMPs) has been conducted as a solution to overcome antibiotic resistance. In particular, the synergistic effect that appears when two or more AMPs are used in combination has been observed. To find an effective synergistic combination, it is necessary to understand the underlying mechanism. However, a consistent explanation for this phenomenon has not yet been provided due to limitations in experimentally determining or predicting the structure of the heteroaggregates formed by the interactions between different AMPs and the interaction of the aggregate surface with the lipid membrane surface. In this study, we conducted molecular dynamics simulations for two heterogeneous aggregates of melittin-indolicidin and pexiganan-indolicidin to observe their structures in the solution phase and their interactions with the lipid membrane. We aimed to determine how the surfaces of these aggregates interact with the lipid membrane. Due to the different amino acid residue sequence characteristics of melittin and pexiganan, we found that when the two AMPs bind to indolicidin, they form aggregates with completely different structural characteristics. Accordingly, the sequence characteristics of pexiganan, which exhibits a relatively unstable structure compared to melittin in aqueous solution or on lipid membranes, allow for a more stable interaction with the lipid membrane when forming aggregates with indolicidin, effectively inhibiting the integrity of the lipid membranes. We also found that the amino acid residues forming the surface of the AMP aggregate show differential binding strengths to different lipid species forming the lipid membrane, thereby disrupting the membrane in a way that weakens its integrity. Through this, we provided insight into the basic principle of how the synergistic effect of AMPs occurs.
Read full abstract