Tumor-derived prostaglandin E2 (PGE2) impairs anti-tumor immunity by priming suppressive functions on various immune cell types, including dendritic cells (DCs). In this way, tumors mediate DC dysfunction and hamper their anti-tumoral activity. PGE2 is known to modulate DC function via signaling through the E-prostanoid receptor type (EP) 2 and EP4. Preclinical studies have demonstrated the therapeutic value of targeting EP2/4 receptor signaling in DCs. Ongoing phase I clinical trials with EP antagonists have shown immunomodulation in cancer patients. However, the systemic drug administration leads to off-target events and subsequent side-effects. To limit the off-target effects of EP targeting, EP2 and EP4 antagonists were encapsulated in polymeric nanoparticles (NPs). In this study we evaluated the efficacy of EP2/4 specific antagonists encapsulated in NPs to protect cDC2s from suppressive effects of tumor-derived PGE2 in different tumor models. We show that tumor-derived PGE2 signals via EP2/4 to mediate the acquisition of a suppressive phenotype of cDC2s. EP2/4 antagonists encapsulated NPs impaired the conversion of cDC2s towards a suppressive state and inhibited the occurrence of suppressive features such as IL-10 production or the ability to expand Tregs. Importantly, the NPs abolished the transition towards this suppressive state in different tumor models: Melanoma-conditioned media, ascites fluid derived from ovarian cancer patients (2D), and upon coculture with colorectal cancer patient-derived organoids (3D). We propose that targeting the PGE2-EP2/4 axis using NPs can achieve immunomodulation in the immune system of cancer patients, alleviate tumor-derived suppression, and thus facilitate the development of potent anti-tumor immunity in cancer patients.
Read full abstract