Growing epidemiological evidence has shown that exposure to ambient air pollution contributes to poor sleep quality. However, whether variability in air pollution exposure affects sleep quality remains unclear. Based on a large sample in China, this study linked individual air pollutant exposure levels and temporal variability with subjective sleep quality. Town-level data on daily air pollution concentration for 30 days prior to the survey date were collected, and the monthly mean value, standard deviations, number of heavily polluted days, and trajectory for six common pollutants were calculated to measure air pollution exposure and its variations. Sleep quality was subjectively assessed using the Pittsburgh Sleep Quality Index (PSQI), and a PSQI score above 5 indicated overall poor sleep quality. Multilevel and negative control models were used. Both air pollution exposure and variability contributed to poor sleep quality. A one-point increase in the one-month mean concentration of particulate matter with aerodynamic diameters of ≤2.5 μm (PM2.5) and ≤10 μm (PM10) led to 0.4% (95% confidence interval (CI): 1.002–1.006) and 0.3% (95% CI: 1.001–1.004) increases in the likelihoods of overall poor sleep quality (PSQI score >5), respectively; the odds ratios of a heavy pollution day with PM2.5 and PM10 were 2.2% (95% CI: 1.012–1.032) and 2.2% (95% CI: 1.012–1.032), respectively. Although the mean concentrations of nitrogen dioxide, sulfur dioxide, and carbon monoxide met the national standard, they contributed to the likelihood of overall poor sleep quality (PSQI score >5). A trajectory of air pollution exposure with maximum variability was associated with a higher likelihood of overall poor sleep quality (PSQI score >5). Subjective measures of sleep latency, duration, and efficiency (derived from PSQI) were affected in most cases. Thus, sleep health improvements should account for air pollution exposure and its variations in China under relatively high air pollution levels.
Read full abstract