Unsynchronized localization systems based on the measurement of time (difference) of arrival require reliable time stamps of the received signal. Noise, frequency shifts, and echoes disturb the signal and induce measurement errors of the time stamp, which leads to localization errors. Furthermore, the line of sight (LOS) signal has to be distinguished from the echoes to avoid false signal tracking. The proposed method combines the information of an ultrasound transmission with the measured time stamp and estimates the identifier. In our approach, the ultrasound transmission system uses phase-shift keying to modulate the signal. The received symbols and the time stamps are tracked and fused by the Kalman filter to increase the signal-to-noise ratio of the fused symbols and improve the validity of the decoding. Hence, the bias of the received symbols is tracked and the tracking allows to distinguish between the LOS signal and the echoes. As a result, the data fusion reduces the packet error rate from 70% at a distance of 21 m to 4.5%. Moreover, the median error of the localization is reduced from 7 to 4.6 cm.
Read full abstract