A novel class of Buchdahl-inspired metrics with closed-form expressions was recently obtained based on Buchdahl’s seminal work on searching for static, spherically symmetric metrics in R2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathcal {R}}}^{2}$$\\end{document} gravity in vacuo. Buchdahl-inspired spacetimes provide an interesting framework for testing predictions of R2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathcal {R}}}^{2}$$\\end{document} gravity models against observations. To test these Buchdahl-inspired spacetimes, we consider observational constraints imposed on the deviation parameter, which characterizes the deviation of the asymptotically flat Buchdahl-inspired metric from the Schwarzschild spacetime. We utilize several recent solar system experiments and observations of the S2 star in the galactic center and the black hole shadow. By calculating the effects of Buchdahl-inspired spacetimes on astronomical observations both within and outside of the solar system, including the deflection angle of light by the Sun, gravitational time delay, perihelion advance, shadow, and geodetic precession, we determine observational constraints on the corresponding deviation parameters by comparing theoretical predictions with the most recent observations. Among these constraints, we find that the tightest one comes from the Cassini mission’s measurement of gravitational time delay.
Read full abstract