Pulmonary hypertension (PH), defined by a mean pulmonary arterial blood pressure above 20 mmHg in the main pulmonary artery, is a cardiovascular disease impacting the pulmonary vasculature. PH is accompanied by chronic vascular remodeling, wherein vessels become stiffer, large vessels dilate, and smaller vessels constrict. Some types of PH, including hypoxia-induced PH (HPH), also lead to microvascular rarefaction. This study analyzes the change in pulmonary arterial morphometry in the presence of HPH using novel methods from topological data analysis (TDA). We employ persistent homology to quantify arterial morphometry for control and HPH mice characterizing normalized arterial trees extracted from micro-computed tomography (micro-CT) images. We normalize generated trees using three pruning algorithms before comparing the topology of control and HPH trees.This proof-of-concept study shows that the pruning method affects the spatial tree statistics and complexity. We find that HPH trees are stiffer than control trees but have more branches and a higher depth. Relative directional complexities are lower in HPH animals in the right, ventral, and posterior directions. For the radius pruned trees, this difference is more significant at lower perfusion pressures enabling analysis of remodeling of larger vessels. At higher pressures, the arterial networks include more distal vessels. Results show that the right, ventral, and posterior relative directional complexities increase in HPH trees, indicating the remodeling of distal vessels in these directions. Strahler order pruning enables us to generate trees of comparable size, and results, at all pressure, show that HPH trees have lower complexity than the control trees.Our analysis is based on data from 6 animals (3 control and 3 HPH mice), and even though our analysis is performed in a small dataset, this study provides a framework and proof-of-concept for analyzing properties of biological trees using tools from Topological Data Analysis (TDA). Findings derived from this study bring us a step closer to extracting relevant information for quantifying remodeling in HPH.
Read full abstract