This study describes the use of the Mixture Design for simultaneals to improve the physical properties and acceptability of gluten-free bread (GFB) based on whole pseudocereals flour, as well as to define dough and bread instrumental predictors of the sensory quality of GFB. Three simplex-centroid designs were used to study the effects of each pseudocereal flour (amaranth – AF, buckwheat – BF, and quinoa – QF) blended with rice flour (RF) and potato starch (PS) on dough and bread properties. A total of 30 GFB formulations were produced and evaluated. Results reveal relationships between dough Mixolab parameters, such as C3 and C4, related to gelatinization and starch stability, with crumb moisture and firmness of GFB formulation, in which higher values of these parameters related to higher acceptability scores (>7 on a 10 cm hydroid hedonic scale). However, higher values of the secondary parameter C3-C4 was related to lower loaf-specific volume, impairing appearance and texture acceptability, as well as overall liking. The interaction effects between pseudocereal flour and RF increases dough consistency, bread volume, softness, and acceptability. Blends of 50% AF, BF, or QF with 50% RF results in GFB with high acceptability (overall liking of 8). The maximum pseudocereal proportions to obtain acceptable GFB (scores ≥ 7 for appearance, color, odor, texture, flavor acceptability and overall liking) were 60% AF, 85% BF, and 82% QF blended with RF. The combination of instrumental and sensory methods was useful to identify parameters capable of predicting the GFB quality, which may be useful for food scientists and producers to face the challenges regarding the development of healthier and better quality GFB to meet consumer needs.
Read full abstract