The actual driving conditions of electric vehicles (EVs) are complex and changeable. Limited by road adhesion conditions, it is necessary to give priority to ensuring safety, taking into account the energy recovery ratio of the vehicle during braking to obtain better braking quality. In this work, an electric vehicle with an EHB (electro-hydraulic braking) system whose braking force adaptive distribution control strategy is studied. Firstly, the vehicle dynamics model, including seven degrees of freedom, tire, drive motor, main reducer, battery pack, and braking system, was constructed, which is attributed to the vehicle configuration and braking system scheme. Second, based on curve I and ECE regulations, the adaptive braking force distribution control strategy was formulated by taking the maximum regenerative braking torque as the inflection point, the synchronous adhesion coefficient as the desired point, and the battery SOC, road adhesion coefficient, and braking strength as the threshold. Finally, the vehicle dynamics simulation model was built on the Matlab/Simulink platform, and the simulation results verified the feasibility of the proposed braking force adaptive allocation control strategy. The research shows that the adaptive distribution control strategy can better adapt to the complex and variable driving conditions of the vehicle by combining the inflection point and the desired point. The braking energy recovery ratios of the vehicle under the NEDC and NYCC cycle conditions on a high adhesion road are 52.62% and 47.45%. The braking force distribution curve is close to curve I under the low adhesion extreme road.
Read full abstract