In this study, a NiCr/YSZ coating was applied to a γ-TiAl surface using multi-arc ion plating technology to enhance its high-temperature performance and explore the mechanisms of high-temperature oxidation and thermal corrosion. The thermal corrosion properties of the γ-TiAl matrix and NiCr/YSZ coating were investigated at 850 °C and 950 °C using a constant-temperature corrosion test in a 75% Na2SO4 + 25% NaCl mixture. The results indicate that after 100 h, the thermal corrosion weight gain of the coating samples was 70.1 mg/cm2 at 850 °C and 118.2 mg/cm2 at 950 °C. At these temperatures, sulfide formation on the surface increases, leading to a loose and porous surface. After 100 h of high-temperature corrosion at 850 °C, the primary oxidation product on the surface of the coating was tetragonal-ZrO2. At 950 °C, Y2O3, which mainly acts as a stabilizer in YSZ, reacted with Na2SO4, resulting in the continuous consumption of Y2O3. This reaction caused a substantial amount of tetragonal-ZrO2 to transform into monoclinic-ZrO2, altering the volume of the ceramic layer, which induced internal stress, crack propagation, and minor spallation. A continuous and dense internal thermally grown oxide (TGO) layer effectively impeded the diffusion of molten salt substances and oxygen, thereby significantly improving the thermal corrosion resistance of the thermal barrier coating.
Read full abstract