Fluorescence techniques such as fluorescence spectroscopy, microfluorometry, and fluorescence microscopy, providing spectral, intensity, polarization, and lifetime information, are amongst the most broadly utilized analytical methods in the life and materials sciences. However, the measured fluorescence data contain sample- and instrument-specific contributions, which hamper their comparability across instruments and laboratories. Comparable, instrument-independent fluorescence data require the determination of the fluorescence instrument's wavelength-dependent spectral responsivity, also termed emission correction curve, for the same instrument settings as those used for the fluorescence measurements as a prerequisite for the subsequent correction of the measured instrument-specific data. Such a spectral correction is essential for the performance comparison of different fluorescent labels and reporters, quantitative fluorescence measurements, the determination of the fluorescence quantum yield, and the spectroscopic measure for the fluorescence efficiency of a fluorophore. Simple-to-use tools for obtaining emission correction curves are chromophore-based reference materials (RMs), referred to as fluorescence standards, with precisely known, preferably certified instrument-independent fluorescence spectra. However, for the increasingly used near-infrared (NIR) wavelength region >700 nm, at present, no spectral fluorescence standards are available. To close this gap, we developed two novel spectral fluorescence standards, BAM F007 and BAM-F009, with broad emission bands from about 580 to 940 nm in ethanolic solution. These liquid fluorescence standards currently under certification, which will be released in 2025, will expand the wavelength range of the already available certified Calibration Kit BAM F001b-F005b from about 300-730 to 940 nm. In this research article, we will detail the criteria utilized for dye and matrix selection and the homogeneity and stability tests accompanying dye certification as well as the calculation of the wavelength-dependent uncertainty budgets of the emission spectra BAM F007 and BAM-F009, determined with the traceably calibrated BAM reference spectrofluorometer. These fluorescence standards can provide the basis for comparable fluorescence measurements in the ultraviolet, visible, and NIR for the fluorescence community.
Read full abstract