Due to the irresistible factors of material properties and processing technology in the steel production, there may be different types of defects on the steel surface, such as rolling scale, patches and so on, which seriously affect the quality of steel, and thus have a negative impact on the economic efficiency of the enterprises. Different from the general target detection tasks, the defect detection tasks have small targets and extreme aspect ratio targets. The contradiction of high positioning accuracy for targets and their inconspicuous features makes the defect detection tasks difficult. Therefore, the original YOLOv5 algorithm was improved in this paper to enhance the accuracy and efficiency of detecting defects on steel surfaces. Firstly, an attention mechanism module was added in the process of transmitting the shallow feature map from the backbone structure to the neck structure, aiming at improving the algorithm attention to small targets information in the feature map and suppressing the influence of irrelevant information on the algorithm, so as to improve the detection accuracy of the algorithm for small targets. Secondly, in order to improve the algorithm effectiveness in detecting extreme aspect ratio targets, K-means algorithm was used to cluster and analyze the marked steel surface defect dataset, so that the anchor boxes can be adapted to all types of sizes, especially for extreme aspect ratio defects. The experimental results showed that the improved algorithms were better than the original YOLOv5 algorithm in terms of the average precision and the mean average precision. The mean average precision, demonstrating the largest increase among the improved YOLOv5 algorithms, was increased by 4.57% in the YOLOv5+CBAM algorithm. In particular, the YOLOv5+CBAM algorithm had a significant increase in the average precision for small targets and extreme aspect ratio targets. Therefore, the YOLOv5+CBAM algorithm could make the accurate localization and classification of steel surface defects, which can provide a reference for the automatic detection of steel defects.
Read full abstract