In emergency rescue scenarios, drones can be equipped with different payloads as needed to aid in tasks such as disaster reconnaissance, situational awareness, communication support, and material assistance. However, rescue missions typically face challenges such as limited reconnaissance boundaries, heterogeneous communication networks, complex data fusion, high task latency, and limited equipment endurance. To address these issues, an unmanned emergency support system tailored for emergency rescue scenarios is designed. This system leverages 5G edge computing technology to provide high-speed and flexible network access along with elastic computing power support, reducing the complexity of data fusion across heterogeneous networks. It supports the control and data transmission of drones through the separation of the control plane and the data plane. Furthermore, by applying the Tammer decomposition method to break down the system optimization problem, the Global Learning Seagull Algorithm for Gaussian Mapping (GLSOAG) is proposed to jointly optimize the system’s energy consumption and latency. Through simulation experiments, the GLSOAG demonstrates significant advantages over the Seagull Optimization Algorithm (SOA), Particle Swarm Optimization (PSO), and Beetle Antennae Search Algorithm (BAS) in terms of convergence speed, optimization accuracy, and stability. The system optimization approach effectively reduces the system’s energy consumption and latency costs. Overall, our work alleviates the pain points faced in rescue scenarios to some extent.
Read full abstract