In order to achieve wireless remote monitoring of wind-induced vibrations in power-transmission lines based on MEMS sensors, it is necessary to devise a method for reconstructing the wind swing curve, enabling the device’s real-time performance to promptly acquire, restore, and analyze data. Based on existing single-axis vibration-sensitive components, a measurement array using self-powered MEMS sensors and spacers has been designed. The Orthogonal Matching Pursuit (OMP) algorithm is selected to obtain displacement data collected by sensors installed on the transmission-line spacers. Leveraging the inherent sparsity of the data, a Gaussian white noise regularization matrix is chosen to establish the observation matrix. Through the algorithm, wind data curve reconstruction is achieved, enabling the reconstruction of large-span wind-induced vibration information without distortion. The experimental results demonstrate that when applying the orthogonal tracking algorithm in transmission-line curve reconstruction, sparsity is selected based on the sampling length, that is, the number of sensors installed on the spacers is determined by the span length; a portion of the observation values are selected to generate the observation matrix; and the wind galloping data curve of the transmission line is well restored.
Read full abstract