Efficient water management is crucial for sustainable agriculture and water resource conservation, particularly in water-scarce regions. This study investigated the effect of different irrigation depths on onion (Allium cepa L.) yield and water use patterns in a semi-arid tropical region of Colombia, using a completely randomized design with five treatments. The treatments ranged from 0–100% of total available water (TAW), T1 (100% of TAW), T2 (80% of TAW), T3 (60% of TAW), T4 (40% of TAW), and T5 (20% of TAW). The experiment was conducted in a greenhouse during one growing season (2022–2023). The normalized water productivity (WP *), irrigation water productivity (IWP), consumptive water productivity, blue water footprint (WFblue), marginal water use efficiency (MWUE), and elasticity of water productivity (EWP), as well as some parameters of quality onion, were determined. The soil in the experimental field was classified as sandy loam; the results show that the WP * of onion is 17.42 g m−2, the water production function shows the maximum production will be achieved at a water application depth of approximately 943 mm, and beyond that, the biomass yield will decrease with additional water application, IWP values for onion ranged from 2.18 to 3.42 kg m−3, the highest Wfblue was in T5 (34.10 m3 t−1), and low Wfblue was T1 (20.95 m3 t−1). In terms of quality, treatment T1 had the most favorable effects on bulb weight, polar diameter, and equatorial diameter, while treatment T5 had the least favorable effects. The study highlights the importance of efficient irrigation on sandy loam soils to maximize yield and water use efficiency. It provides valuable data for evaluating the potential yield benefits of precision irrigation in the study area. Optimizing irrigation depth can significantly improve onion yield and water use efficiency in semi-arid regions.
Read full abstract