Neoantigens are promising targets for cancer immunotherapies and might arise from alternative splicing. However, detecting tumor-specific splicing is challenging because many non-canonical splice junctions identified in tumors also appear in healthy tissues. To increase tumor-specificity, we focused on splicing caused by somatic mutations as a source for neoantigen candidates in individual patients. We developed the tool splice2neo with multiple functionalities to integrate predicted splice effects from somatic mutations with splice junctions detected in tumor RNA-seq and to annotate the resulting transcript and peptide sequences. Additionally, we provide the tool EasyQuant for targeted RNA-seq read mapping to candidate splice junctions. Using a stringent detection rule, we predicted 1.7 splice junctions per patient as splice targets with a false discovery rate below 5% in a melanoma cohort. We confirmed tumor-specificity using independent, healthy tissue samples. Furthermore, using tumor-derived RNA, we confirmed individual exon-skipping events experimentally. Most target splice junctions encoded neoepitope candidates with predicted major histocompatibility complex (MHC)-I or MHC-II binding. Compared to neoepitope candidates from non-synonymous point mutations, the splicing-derived MHC-I neoepitope candidates had lower self-similarity to corresponding wild-type peptides. In conclusion, we demonstrate that identifying mutation-derived, tumor-specific splice junctions can lead to additional neoantigen candidates to expand the target repertoire for cancer immunotherapies. The R package splice2neo and the python package EasyQuant are available at https://github.com/TRON-Bioinformatics/splice2neo and https://github.com/TRON-Bioinformatics/easyquant, respectively.
Read full abstract