Abstract: The dreadful rate of growth of malicious apps has become a significant issue that sets back the prosperous mobile scheme. A recent report indicates that a brand new malicious app for golem is introduced each ten seconds. To combat this serious malware campaign, we'd like a scalable malware detection approach that may effectively and expeditiously determine malware apps. varied malware detection tools are developed, together with system-level and network-level approaches. However, scaling the detection for an outsized bundle of apps remains a difficult task. during this paper, we tend to introduce SIGPID, a malware detection system supported permission usage analysis to address the speedy increase within the range of golem malware. rather than extracting and analyzing all golem permissions, we tend to develop 3-levels of pruning by mining the permission information to spot the foremost important permissions that may be effective in identifying between benign and malicious apps. SIGPID then utilizes machine-learning based mostly classification ways to classify totally different families of malware and benign apps. Our analysis finds that solely twenty two permissions square measure important. we tend to then compare the performance of our approach, victimisation solely twenty two permissions, against a baseline approach that analyzes all permissions. The results indicate that once Support Vector Machine (SVM) is employed because the classifier, we are able to bring home the bacon over ninetieth of preciseness, recall, accuracy, and F-measure, that square measure concerning constant as those created by the baseline approach whereas acquisition the analysis times that square measure four to thirty two times but those of victimisation all permissions. Compared against alternative progressive approaches, SIGPID is more practical by sleuthing ninety three.62% of malware within the information set, and 91.4% unknown/new malware samples. Keywords: SIGPID (Significant Permission Identification), SVM(Support Vector Machine), Android, Malware, Benign, Data pruning
Read full abstract