Spreading depolarizations (SDs) have been described in patients with ischemic and haemorrhagic stroke, traumatic brain injury, and migraine with aura, among other conditions. The exact pathophysiological mechanism of SDs is not yet fully established. Our aim in this study was to evaluate the relationship between the electrocorticography (ECoG) findings of SDs and/or epileptiform activity and subsequent epilepsy and electroclinical outcome. This was a prospective observational study of 39 adults, 17 with malignant middle cerebral artery infarction (MMCAI) and 22 with traumatic brain injury, who underwent decompressive craniectomy and multimodal neuromonitoring including ECoG in penumbral tissue. Serial electroencephalography (EEG) recordings were obtained for all surviving patients. Functional disability at 6 and 12months after injury were assessed using the Barthel, modified Rankin (mRS), and Extended Glasgow Outcome (GOS-E) scales. SDs were recorded in 58.9% of patients, being more common-particularly those of isoelectric type-in patients with MMCAI (p < 0.04). At follow-up, 74.7% of patients had epileptiform abnormalities on EEG and/or seizures. A significant correlation was observed between the degree of preserved brain activity on EEG and disability severity (R [mRS]: + 0.7, R [GOS-E, Barthel]: - 0.6, p < 0.001), and between the presence of multifocal epileptiform abnormalities on EEG and more severe disability on the GOS-E at 6months (R: - 0.3, p = 0.03) and 12months (R: - 0.3, p = 0.05). Patients with more SDs and higher depression ratios scored worse on the GOS-E (R: - 0.4 at 6 and 12months) and Barthel (R: - 0.4 at 6 and 12months) disability scales (p < 0.05). The number of SDs (p = 0.064) and the depression ratio (p = 0.1) on ECoG did not show a statistically significant correlation with late epilepsy. SDs are common in the cortex of ischemic or traumatic penumbra. Our study suggests an association between the presence of SDs in the acute phase and worse long-term outcome, although no association with subsequent epilepsy was found. More comprehensive studies, involving ECoG and EEG could help determine their association with epileptogenesis.
Read full abstract