Coastal areas are highly dynamic regions where surface deformation due to natural and anthropogenic activities poses significant challenges. Synthetic Aperture Radar (SAR) interferometry techniques, such as Persistent Scatterer Interferometry (PSInSAR), provide advanced capabilities to monitor surface deformation with high precision. This study applies PSInSAR techniques to estimate surface deformation along coastal zones from 2017 to 2020 using Sentinel-1 data. In the densely populated areas of Pasni, an annual subsidence rate of 130 mm is observed, while the northern, less populated region experiences an uplift of 70 mm per year. Seawater intrusion is an emerging issue causing surface deformation in Pasni’s coastal areas. It infiltrates freshwater aquifers, primarily due to excessive groundwater extraction and rising sea levels. Over time, seawater intrusion destabilizes the underlying soil and rock structures, leading to subsidence or gradual sinking of the ground surface. This form of surface deformation poses significant risks to infrastructure, agriculture, and the local ecosystem. Land deformation varies along the study area’s coastline. The eastern region, which is highly reclaimed, is particularly affected by erosion. The results derived from Sentinel-1 SAR data indicate significant subsidence in major urban districts. This information is crucial for coastal management, hazard assessment, and planning sustainable development in the region.
Read full abstract