Diabetic nephropathy (DN) is a common complication of diabetes mellitus, with oxidative stress playing a critical role in its development. Burdock fructooligosaccharide (BFO), a major compound in Burdock, exhibits antioxidative effects. However, its mechanisms of action and effects on diabetic nephropathy are not clear enough. This study aims to explore the mechanisms of BFO and its impact on streptozotocin-induced diabetic nephropathy in mice. Male C57BL/6J mice were randomly divided into normal control, DN, and BFO groups. Relevant serum biochemical parameters were detected using kits. Renal injury was evaluated through fluorescence microscopy, histopathology, and transmission electron microscopy. Nrf2/HO-1 signaling was analyzed via quantitative real-time PCR, western blotting, and immunohistochemistry. In DN mice, BFO significantly reduced fasting blood glucose, kidney index, urine protein, serum creatinine, blood urea nitrogen, total cholesterol, triglyceride, and low-density lipoprotein cholesterol, while significantly increasing high-density lipoprotein, SOD, and CAT levels. Additionally, BFO protected against streptozotocin-induced renal injury, restored podocyte function, increased both mRNA and protein expression of Nrf2, HO-1, and Bcl-2, and decreased those of Bax. In conclusion, BFO can be used to treat streptozotocin-induced renal injury in mice and is a promising candidate for diabetic nephropathy treatment.
Read full abstract