Cellular steel beam (CSB) is getting more and more popular to be used as the main structural member for steel building structure in the United Kingdom (UK). Despite quite costly to erect and assemble a steel structure member compared to concrete, it has several advantages in terms of lightweight material, higher strength, easy to assemble and aesthetic value. Even though the use of CSB is quite significantly positive, the negative side also needs to be addressed. Any steel structures are prone to fire exposure scenario. The strength of CSB will be significantly decreased when exposed to elevated temperature due to fire. Large deformation from experimental procedure will be clearly seen after the time-temperature curve reach critical stage. Vierendeel bending mechanism and web-post buckling are some of the drawbacks of the CSB at elevated temperature. In this paper, general purpose ABAQUS Finite Element (Version 6.14) on large deformation of protected and unprotected CSB at elevated temperature is proposed. Performance based approach is introduced to validate the numerical analysis with the experimental results from the available Compendium of UK Standard Fire Test Data produced by British Steel Corporation Research Services, Swinden Laboratories, UK.
Read full abstract