The efficient use of limited water resources and improving the water use efficiency (WUE) of arid agricultural systems is becoming one of the greatest challenges in agriculture production and global food security because of the shortage of water resources and increasing demand for food in the world. In this study, we attempted to investigate the interannual trends of evapotranspiration and WUE and the responses of biophysical factors and water utilization strategies over a main cropland ecosystem (i.e., seeded maize, Zea mays L.) in arid regions of North-Western China based on continuous eddy-covariance measurements. This paper showed that ecosystem WUE and canopy WUE of the maize ecosystem were 1.90 ± 0.17 g C kg−1 H2O and 2.44 ± 0.21 g C kg−1 H2O over the observation period, respectively, with a clear variation due to a change of irrigation practice. Traditional flood irrigation generally results in over-irrigation, providing more water than actual crop requirements. Unlike flood irrigation, which can infiltrate into deep soil layers, drip irrigation can only influence the shallow soil moisture, which can lead to decreases of soil moisture of approximately 27–32% and 36–42% compared with flood irrigation for shallow and deep layers, respectively. Additionally, drip irrigation decreases evapotranspiration by 13% and transpiration by 11–14%, leading to increases in ecosystem and canopy WUE of 9–14% and 11%, respectively, compared to the traditional irrigation practice. Therefore, the drip irrigation strategy is an effective method to reduce irrigation water use and increase crop WUE in arid regions. Our study provides guidance to water-saving cultivation systems and has implications for sustainable water resources management and agriculture development in water-limited regions.
Read full abstract