Timely, accurate, and rapid grasping of dynamic change information in magnetic actuation soft robots is essential for advancing their evolution toward intelligent, integrated, and multifunctional systems. However, existing magnetic-actuation soft robots lack effective functions for integrating sensing and actuation. Herein, we demonstrate the integration of distributed fiber optics technology with advanced-programming 3D printing techniques. This integration provides our soft robots unique capabilities such as integrated sensing, precise shape reconstruction, controlled deformation, and sophisticated magnetic navigation. By utilizing an improved magneto-mechanical coupling model and an advanced inversion algorithm, we successfully achieved real-time reconstruction of complex structures, such as 'V', 'N', and 'M' shapes and gripper designs, with a notable response time of 34 ms. Additionally, our robots demonstrate proficiency in magnetic navigation and closed-loop deformation control, making them ideal for operation in confined or obscured environments. This work thus provides a transformative strategy to meet unmet demands in the rapidly growing field of soft robotics, especially in establishing the theoretical and technological foundation for constructing digitized robots.
Read full abstract