Synthetic molecules bearing phosphonic acid groups can be readily attached to oxide surfaces. As part of a program in molecular-based information storage, we have developed routes for the synthesis of diverse porphyrinic compounds bearing phenylphosphonic acid tethers. The routes enable (1) incorporation of masked phosphonic acid groups in precursors for use in the rational synthesis of porphyrinic compounds and (2) derivatization of porphyrins with masked phosphonic acid groups. The precursors include dipyrromethanes, monoacyldipyrromethanes, and diacyldipyrromethanes. The tert-butyl group has been used to mask the dihydroxyphosphoryl substituent. The di-tert-butyloxyphosphoryl unit is stable to the range of conditions employed in syntheses of porphyrins and multiporphyrin arrays yet can be deprotected under mild conditions (TMS-Cl/TEA or TMS-Br/TEA in refluxing CHCl(3)) that do not cause demetalation of zinc or magnesium porphyrins. The porphyrinic compounds that have been prepared include (1) A(3)B-, trans-AB(2)C-, and ABCD-porphyrins that bear a single phenylphosphonic acid group, (2) a trans-A(2)B(2)-porphyrin bearing two phenylphosphonic acid groups, (3) a chlorin that bears a single phenylphosphonic acid group, and (4) a porphyrin dyad bearing a single phenylphosphonic acid group. For selected porphyrin-phosphonic acids, the electrochemical characteristics have been investigated for molecules tethered to SiO(2) surfaces grown on doped Si. The voltammetric behavior indicates that the porphyrin-phosphonic acids form robust, electrically well-behaved monolayers on the oxide surface.
Read full abstract