The accessories perovskite, pyrochlore, zirconolite, calzirtite and melanite from carbonatites and carbonate-rich foidites from the Kaiserstuhl are variously suited for the in situ determination of their U–Pb ages and Sr, Nd- and Hf-isotope ratios by LA-ICP-MS. The 143Nd/144Nd ratios may be determined precisely in all five phases, the 176Hf/177Hf ratios only in calzirtite and the 87Sr/86Sr ratios in perovskites and pyrochlores. The carbonatites and carbonate-rich foidites belong to one of the three magmatic groups that Schleicher et al. (1990) distinguished in the Kaiserstuhl on the basis of their Sr, Nd and Pb isotope ratios. Tephrites, phonolites and essexites (nepheline monzogabbros) form the second and limburgites (nepheline basanites) and olivine nephelinites the third. Our 87Sr/86Sr isotope data from the accessories overlap with the carbonatite and olivine nephelinite fields defined by Schleicher et al. (1990) but exhibit a much narrower range. These and the εNd and εHf values plot along the mantle array in the field of oceanic island basalts relatively close to mid-ocean ridge basalts. Previously reported K–Ar, Ar–Ar and fission track ages for the Kaiserstuhl lie between 16.2 and 17.8 Ma. They stem entirely from the geologically older tephrites, phonolites and essexites. No ages existed so far for the geologically younger carbonatites and carbonate-rich foidites except for one apatite fission track age (15.8 Ma). We obtained precise U–Pb ages for zirconolites and calzirtites of 15.66, respectively 15.5 Ma (± 0.1 2σ) and for pyrochlores of 15.35 ± 0.24 Ma. Only the perovskites from the Badberg soevite yielded a U–P concordia age of 14.56 ± 0.86 Ma while the perovskites from bergalites (haüyne melilitites) only gave 206Pb/238U and 208Pb/232Th ages of 15.26 ± 0.21, respectively, 15.28 ± 0.48 Ma. The main Kaiserstuhl rock types were emplaced over a time span of 1.6 Ma almost 1 million years before the carbonatites and carbonate-rich foidites. These were emplaced within only 0.32 Ma.
Read full abstract