We present an algorithm implemented in a MATLAB toolbox that is able to compute the wave propagation of coherent visible light through macroscopic lenses. The mathematical operations that complete the status at the end of the first paper of this sequence, where only limited configurations of the propagation direction were allowed toward arbitrarily directed input beam computations, are provided. With their help, high numerical aperture (NA) field tracing is made possible that is based on fast Fourier routines and is Maxwell exact in the limit of macroscopic structures and large curvature radii, including reflection and transmission. Whereas the curvature-dependent terms in the Helmholtz equation are under analytical control through the first perturbation order in the curvature, they are only included in the propagation distance in the current investigation for the sake of reasonable time consumption. We give a number of examples that demonstrate the strengths of our approach, describe essential differences from other approaches that were not obvious when Paper 1 was written, and list a number of drawbacks and possible simplifications to overcome them.
Read full abstract