Lithium is one of the lightest elements on Earth and it has been in the environment since the formation of the galaxy. While a common element, it has not been found to be an essential element in biological processes, ranging from single cell organisms to Homo sapiens. Instead, at an early stage of evolution, organisms committed to a range of elements such as sodium, potassium, calcium, magnesium, zinc, and iron to serve essential functions. Such ions serve critical functions in ion channels, as co-factors in enzymes, as a cofactor in oxygen transport, in DNA replication, as a storage molecule in bone and liver, and in a variety of other roles in biological processes. While seemingly excluded from a major essential role in such processes, lithium ions appear to be able to modulate a variety of biological processes and "correct" deviation from normal activity, as a deficiency of lithium can have biological consequences. Lithium salts are found in low levels in many foods and water supplies, but the effectiveness of Li salts to affect biological systems came to recent prominence with the work of Cade, who reported that administrating Li salts calmed guinea pigs and was subsequently effective at relatively high doses to "normalize" a subset of patients with bipolar disorders. Because of its ability to modulate many biological pathways and processes (e.g., cyclic AMP, GSK-3beta, inositol metabolism, NaK ATPases, neuro processes and centers, immune-related events, respectively) both in vitro and in vivo and during development and adult life, Li salts have become both a useful tool to better understand the molecular regulation of such processes and to also provide insights into altered biological processes in vivo during aging and in disease states. While the range of targets for lithium action supports its possible role as a modulator of biological dysregulation, it presents a conundrum for researchers attempting to elucidate its specific primary target in different tissues in vivo. This review will discuss aspects of the state of knowledge regarding some of the systems that can be influenced, focusing on those involving neural and autoimmunity as examples, some of the mechanisms involved, examples of how Li salts can be used to study model systems, as well as suggesting areas where the use of Li salts could lead to additional insights into both disease mechanisms and natural processes at the molecular and cell levels. In addition, caveats regarding lithium doses used, the strengths and weaknesses of rodent models, the background genetics of the strain of mice or rats employed, and the sex of the animals or the cells used, are discussed. Low-dose lithium may have excellent potential, alone or in combination with other interventions to prevent or alleviate aging-associated conditions and disease progression.