The IMERG data product is an optimal combination of precipitation estimates from the Global Precipitation Mission (GPM), making use of a variety of data types, primarily data from various spaceborne passive instruments. Previous versions of the IMERG product have been extensively validated by comparisons with gauge data and ground-based radars over land. However, IMERG rain rates, especially sub-daily, over open ocean are less validated due to the scarcity of comparison data, particularly with the relatively new Version 07. To address this issue, we consider IMERG V07 30-min data acquired in tropical cyclones over open ocean. We perform two tasks. The first is a straightforward comparison between IMERG precipitation rates and those retrieved from the GPM Dual-frequency Precipitation Radar (DPR). From this, we find that IMERG and DPR are close at low rain rates, while, at high rain rates, IMERG tends to be lower than DPR. The second task is the assessment of IMERG’s ability to represent or detect structures commonly seen in tropical cyclones, including the annular structure and concentric eyewalls. For this, we operate on IMERG data with many machine learning algorithms and are able to achieve a 96% classification accuracy, indicating that IMERG does indeed contain TC structural information.
Read full abstract