This paper presents a comprehensive review of the Global Navigation Satellite System (GNSS) with Internet of Things (IoT) applications and their use cases with special emphasis on Machine learning (ML) and Deep Learning (DL) models. Various factors like the availability of a huge amount of GNSS data due to the increasing number of interconnected devices having low-cost data storage and low-power processing technologies - which is majorly due to the evolution of IoT - have accelerated the use of machine learning and deep learning based algorithms in the GNSS community. IoT and GNSS technology can track almost any item possible. Smart cities are being developed with the use of GNSS and IoT. This survey paper primarily reviews several machine learning and deep learning algorithms and solutions applied to various GNSS use cases that are especially helpful in providing accurate and seamless navigation solutions in urban areas. Multipath, signal outages with less satellite visibility, and lost communication links are major challenges that hinder the navigation process in crowded areas like cities and dense forests. The advantages and disadvantages of using machine learning techniques are also highlighted along with their potential applications with GNSS and IoT.
Read full abstract