This study aimed to investigate the dynamic changes in monocytic myeloid-derived suppressor cells (M-MDSCs) and their implications in the pathogenesis of acute coronary syndrome (ACS), shedding light on potential therapeutic targets. Peripheral blood samples were collected from 68 ACS patients, 35 stable angina pectoris (SAP) patients, and 30 healthy controls (HC). Multi-parameter flow cytometry was employed for analysis of M-MDSCs, explored with disease characteristics and progression. ACS patients exhibited an increased frequency of circulating M-MDSCs compared to SAP patients and HC. M-MDSCs levels demonstrated associations with ACS type, coronary artery lesions, multi-vessel disease, and cardiac dysfunction severity. Higher M-MDSCs levels were found in obese patients. Notably, therapy led to a significant decrease in M-MDSCs frequency. Furthermore, ACS patients exhibited elevated levels of interleukin (IL)-6, IL-10, granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor-α (TNF-α) in the cytokine profile associated with M-MDSCs. Increased expression of arginase-1(Arg-1) was observed in ACS patients, with positive correlations between M-MDSCs levels and IL-6, GM-CSF, and Arg-1 expression. The diagnostic performance of triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and M-MDSCs levels varied in predicting the severity of coronary artery stenosis, with TG showing higher specificity, HDL-C displaying higher sensitivity, and M-MDSCs levels demonstrating balanced sensitivity and specificity. Assessment of M-MDSCs frequency holds promise as a predictive marker for disease progression and therapy response of coronary artery stenosis. The elevated presence of M-MDSCs suggests their potential role in modulating ACS-related inflammation.
Read full abstract