Hole transport in bulk silicon is explored using an efficient and accurate Monte Carlo (MC) tool based on the local pseudopotential band structure. Acoustic and optical phonon scattering, ionized impurity scattering, and impact ionization are the dominant scattering mechanisms that have been included. In the interest of computational efficiency, momentum relaxation times have been used to describe ionized impurity scattering and self-scattering rates have been computed in a dynamic fashion. The temperature and doping dependence of low-field hole mobility is obtained and good agreement with experimental data has been observed. MC extracted impact ionization coefficients are also shown to agree well with published experimental data. Momentum and energy relaxation times are obtained as a function of the average hole energy for use in moment based hydrodynamic simulators. The MC model is suitable for studying both low-field and high-field hole transport in silicon.
Read full abstract