The Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol is a widely used method for managing energy consumption in Wireless Sensor Networks (WSNs). However, it has limitations that affect network longevity and performance. This paper presents an improved version of the LEACH protocol, termed MFG-LEACH, which incorporates the Mean Field Game (MFG) theory to optimize energy efficiency and network lifetime. The proposed MFG-LEACH protocol addresses the imbalances in energy consumption by modeling the interactions among nodes as a game, where each node optimizes its transmission energy based on the collective state of the network. We conducted extensive simulations to compare MFG-LEACH with Enhanced Zonal Stable Election Protocol (EZ-SEP), Energy-Aware Multi-Hop Routing (EAMR), and Balanced Residual Energy routing (BRE) protocols. The results demonstrate that MFG-LEACH significantly reduces energy consumption and increases the number of packets received across different node densities, thereby validating the effectiveness of our approach.
Read full abstract